	スペクトルデ-	-タ(NMR MS)	
製品番号 32	品名	ペオノール Pa	aeonol
分子式	$C_9H_{10}O_3$	分子量	166.18
CAS RN	552-41-0	作成日	2023/11/7
測定核種	¹ H (400MHz)	測定溶媒	CDCI ₃
Reference	H.J. Xu, et al., J. Org. Chem.,	2011 , <i>76</i> , 7, 2296-2300	0.
COCH ₃ OCH ₃	H .0 9.0 8.0 7.0 6	.0 5.0 4.0 3	.0 2.0 1.0 0
11.0 10	7.6.25 6.433 6.433 6.433 7.00 6.431 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	.0 5.0 4.0 3	2.0 1.0 0
分析機器	LCMS (Q-TOF)	イオン化法	ESI (positive ion mode)
WS(+) 保持時間: [15.625-15.865]-[15.585-15.950] 0e3 0e2 0e2 0e2 0e2 0e2 0e2		167.07	1.0
i考 [M+H]+:	167.07	166 168 170 172 174	176 178 180 182 184 186